Effect of E. coli heat-stable enterotoxin on colonic transport in guanylyl cyclase C receptor-deficient mice.
نویسندگان
چکیده
We studied the functional importance of the colonic guanylyl cyclase C (GCC) receptor in GCC receptor-deficient mice. Mice were anesthetized with pentobarbital sodium, and colon segments were studied in Ussing chambers in HCO3- Ringer under short-circuit conditions. Receptor-deficient mouse proximal colon exhibited similar net Na+ absorption, lower net Cl- absorption, and a negative residual ion flux (J(R)), indicating net HCO3- absorption compared with that in normal mice. In normal mouse proximal colon, mucosal addition of 50 nM Escherichia coli heat-stable enterotoxin (STa) increased the serosal-to-mucosal flux of Cl- (J(s-->m)(Cl)) and decreased net Cl- flux (J(net)(Cl)) accompanied by increases in short-circuit current (I(sc)), potential difference (PD), and tissue conductance (G). Serosal STa had no effect. In distal colon neither mucosal nor serosal STa affected ion transport. In receptor-deficient mice, neither mucosal nor serosal 500 nM STa affected electrolyte transport in proximal or distal colon. In these mice, 1 mM 8-bromo-cGMP produced changes in proximal colon J(s-->m)(Cl) and J(net)(Cl), I(sc), PD, G, and J(R) similar to mucosal STa addition in normal mice. We conclude that the GCC receptor is necessary in the mouse proximal colon for a secretory response to mucosal STa.
منابع مشابه
Cure and Curse: E. coli Heat-Stable Enterotoxin and Its Receptor Guanylyl Cyclase C
Enterotoxigenic Escherichia coli (ETEC) associated diarrhea is responsible for roughly half a million deaths per year, the majority taking place in developing countries. The main agent responsible for these diseases is the bacterial heat-stable enterotoxin STa. STa is secreted by ETEC and after secretion binds to the intestinal receptor guanylyl cyclase C (GC-C), thus triggering a signaling cas...
متن کاملST-Producing E. coli Oppose Carcinogen-Induced Colorectal Tumorigenesis in Mice
There is a geographic inequality in the incidence of colorectal cancer, lowest in developing countries, and greatest in developed countries. This disparity suggests an environmental contribution to cancer resistance in endemic populations. Enterotoxigenic bacteria associated with diarrheal disease are prevalent in developing countries, including enterotoxigenic E. coli (ETEC) producing heat-sta...
متن کاملEffects of heat-stable enterotoxin of Yersinia enterocolitica on ion transport and cyclic guanosine 3',5'-monophosphate metabolism in rabbit ileum.
Strains of Yersinia enterocolitica produce a heat-stable enterotoxin which is positive in the suckling mouse bioassay. Partial purification by a procedure previously worked out for heat-stable Escherichia coli enterotoxin yielded a substance which increases particulate guanylate cyclase activity and short-circuit current and inhibits active Cl-absorption in rabbit ileal mucosa. These effects of...
متن کاملRegulation of cell signaling by the cytoplasmic domains of the heat-stable enterotoxin receptor: identification of autoinhibitory and activating motifs.
Infection with enterotoxigenic Escherichia coli is a leading cause of traveler's diarrhea. Many enterotoxigenic E. coli strains produce heat-stable enterotoxin (ST), a peptide that binds to the intestinal receptor guanylyl cyclase C known as STaR. The toxin-receptor interaction elevates intracellular cGMP, which then activates apical chloride secretion, resulting in secretory diarrhea. In this ...
متن کاملDisruption of the guanylyl cyclase-C gene leads to a paradoxical phenotype of viable but heat-stable enterotoxin-resistant mice.
Heat-stable enterotoxins (STa), which cause an acute secretory diarrhea, have been suggested to mediate their actions through the guanylyl cyclase-C (GC-C) receptor. The GC-C gene was disrupted by insertion of neo into exon 1 and subsequent homologous recombination. GC-C null mice contained no detectable GC-C protein. Intestine mucosal guanylyl cyclase activity was approximately 16-fold higher ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 280 2 شماره
صفحات -
تاریخ انتشار 2001